知识驱动助力人工智能认知能力的提升,满足人工智能深入各个行业不同应用场景的需求。随着深度学习与知识图谱等多重技术的深度融合,综合利用大量知识数据中的因果和逻辑关系,可以助力人工智能认知能力的提升,来解决人工智能深入各个行业时场景复杂、可解释性较低等问题。在技术方面,知识和数据双轮驱动的人工智能技术路线展现了强劲的发展潜力,知识的融合应用有效地提升了智能问答、智能推荐、大规模预训练模型等人工智能技术中的效果。文心大模型、孟子大模型等均尝试利用知识增强技术路线提升效果。在应用方面,知识与人工智能的融合拓展了人工智能的应用范围,促进形成知识凝练、知识流转、知识赋能闭环,推动数字化发展下行业与企业各类知识的沉淀、流转,显著提升实际场景的智能应用水平。
资料获取 | |
新闻资讯 | |
== 资讯 == | |
» 人形机器人未来3-5年能够实现产业化的方 | |
» 导诊服务机器人上岗门诊大厅 助力医院智慧 | |
» 山东省青岛市政府办公厅发布《数字青岛20 | |
» 关于印发《青海省支持大数据产业发展政策措 | |
» 全屋无主灯智能化规范 | |
» 微波雷达传感技术室内照明应用规范 | |
» 人工智能研发运营体系(ML0ps)实践指 | |
» 四驱四转移动机器人运动模型及应用分析 | |
» 国内细分赛道企业在 AIGC 各应用场景 | |
» 国内科技大厂布局生成式 AI,未来有望借 | |
» AIGC领域相关初创公司及业务场景梳理 | |
» ChatGPT 以 GPT+RLHF 模 | |
» AIGC提升文字 图片渗透率,视频 直播 | |
» AI商业化空间前景广阔应用场景丰富 | |
» AI 内容创作成本大幅降低且耗时更短 优 | |
== 机器人推荐 == | |
![]() 服务机器人(迎宾、讲解、导诊...) |
|
![]() 智能消毒机器人 |
|
![]() 机器人底盘 |
![]() |